博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[Leetcode] Factor Combinations 因数组合
阅读量:6573 次
发布时间:2019-06-24

本文共 1503 字,大约阅读时间需要 5 分钟。

Factor Combinations

Numbers can be regarded as product of its factors. For example,

8 = 2 x 2 x 2;  = 2 x 4.

Write a function that takes an integer n and return all possible combinations of its factors.

Note:

You may assume that n is always positive.
Factors should be greater than 1 and less than n.

递归

复杂度

O(2^N) 时间 O(N) 空间

思路

递归,为了防止2,2,3和2,3,2这种重复,参数里需要一个start

递归函数接口定义:

helper函数找n的所有因式分解,每个因式分解最小的因子从start开始,后面的因子们升序排列,把所有这样的因式分解放到result里

void helper(int n,    //对谁进行因式分解            int start,     //最小的因子有多大            List
list, //分解到n之前的因子们 List
> result) //结果

注意

输入的数不算做自己的因子

最开始的循环for(int i = start; i <= n; i++)非常费时,做了很多没用的事,可以这样:
for (int i = start; i <= sqrt(n); i++)这样省去了大量的无用计算,时间从228ms降到2ms,有100倍之多。
但是这样写会漏掉一种情况,就是n为因子的情况,加进去即可。

代码

public class Solution {    public List
> getFactors(int n) { List
> result = new ArrayList<>(); List
list = new ArrayList<>(); helper(n, 2, list, result); return result; } public void helper(int n, int start, List
list, List
> result) { if (n == 1) { if (list.size() > 1) { //the original input is not counted in result.add(new ArrayList
(list)); } return; } for (int i = start; i <= Math.sqrt(n); i++) { //这里只要到根号n就好了 if (n % i == 0) { list.add(i); helper(n / i, i, list, result); list.remove(list.size() - 1); } } list.add(n); //把n加进去 helper(1, n, list, result); list.remove(list.size() - 1); }}

转载地址:http://hggjo.baihongyu.com/

你可能感兴趣的文章
2018-2019-2 网络对抗技术 20165318 Exp1 PC平台逆向破解
查看>>
关于图片或者文件在数据库的存储方式归纳
查看>>
hihocoder 1014 Trie树
查看>>
ADO.NET笔记——使用DataSet返回数据
查看>>
MOTO XT702添加开机音乐
查看>>
Python脚本日志系统
查看>>
B0BO TFS 安装指南(转载)
查看>>
gulp常用命令
查看>>
TCP(Socket基础编程)
查看>>
RowSet的使用
查看>>
每日一记--cookie
查看>>
WPF and Silverlight 学习笔记(十二):WPF Panel内容模型、Decorator内容模型及其他...
查看>>
MySQL:创建、修改和删除表
查看>>
Java多线程程序设计详细解析
查看>>
IOS 7 Study - UISegmentedControl
查看>>
八、通用类型系统
查看>>
JQuery的ajaxFileUpload的使用
查看>>
Java分享笔记:使用keySet方法获取Map集合中的元素
查看>>
Java面向对象练习题之人员信息
查看>>
关于Integer类中parseInt()和valueOf()方法的区别以及int和String类性的转换.以及String类valueOf()方法...
查看>>